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I.   INTRODUCTION 

The history of fractional calculus is almost as long as the development of traditional calculus. In 1695, the concept of 

fractional derivative first appeared in a famous letter between L’Hospital and Leibniz. Many great mathematicians have 

further developed this field, such as Euler, Lagrange, Laplace, Fourier, Abel, Liouville, Riemann, and Weyl. In the past few 

decades, fractional calculus has played a very important role in physics, electrical engineering, economics, biology, control 

theory, and other fields [1-7]. 

However, the definition of fractional derivative is not unique. Common definitions include Riemann-Liouville (R-L) 

fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, Jumarie type of R-L 

fractional derivative [8-12]. Since the Jumarie type of R-L fractional derivative makes the derivative of constant function 

equal to zero, it is easier to use this definition to connect fractional calculus with classical calculus. 

In this paper, based on Jumarie’s modified R-L fractional derivative, we obtain the exact solution of linear system of 

fractional differential equations with constant coefficients. A new multiplication of fractional analytic functions plays an 

important role in this article. Moreover, two examples are provided to illustrate the application of our results. And our 

results are generalizations of these results in ordinary differential equations. 

II.   PRELIMINARIES 

Firstly, the fractional calculus used in this paper and some important properties are introduced below. 

Definition 2.1 ([13]): Assume that 0 < 𝛼 ≤ 1, and 𝑡0 is a real number. The Jumarie’s modified R-L 𝛼-fractional derivative 

is defined by 

                                                                            ( 𝐷𝑡0 𝑡
𝛼)[𝑓(𝑡)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫

𝑓(𝑥)−𝑓(𝑡0)

(𝑡−𝑥)𝛼
𝑑𝑥

𝑡

𝑡0
,                                              (1) 

where Γ( ) is the gamma function. 

Proposition 2.2 ([14]):  If  𝛼, 𝛽, 𝑡0, 𝑐  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                        ( 𝐷𝑡0 𝑡
𝛼)[(𝑡 − 𝑡0)

𝛽] =
Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑡 − 𝑡0)

𝛽−𝛼,                                               (2) 
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and 

                                                                                           ( 𝐷𝑡0 𝑡
𝛼)[𝑐] = 0.                                                                         (3) 

In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([15]): Assume that 𝑡, 𝑡0, and 𝑎𝑘  are real numbers for all 𝑘, 𝑡0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 

𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be expressed as an 𝛼-fractional power series, that is, 𝑓𝛼(𝑡𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)

𝑘𝛼∞
𝑘=0  on some open 

interval containing 𝑡0, then we say that 𝑓𝛼(𝑡𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on 

closed interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional 

analytic function on [𝑎, 𝑏]. 

Definition 2.4 ([16]): If 0 < 𝛼 ≤ 1, 𝑡0 is a real number, and 𝑓𝛼(𝑡𝛼) and 𝑔𝛼(𝑡𝛼) are two 𝛼-fractional analytic functions 

defined on an interval containing 𝑡0 , 

                                                𝑓𝛼(𝑡𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)

𝑘𝛼 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)

𝛼)
⨂𝑘

∞
𝑘=0

∞
𝑘=0 ,                               (4) 

                                               𝑔𝛼(𝑡𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)

𝑘𝛼 = ∑
𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)

𝛼)
⨂𝑘

.∞
𝑘=0

∞
𝑘=0                               (5) 

Then  

                                                                     𝑓𝛼(𝑡𝛼) ⊗ 𝑔𝛼(𝑡𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)

𝑘𝛼∞
𝑘=0 ⊗ ∑

𝑏𝑘

Γ(𝑘𝛼+1)
(𝑡 − 𝑡0)

𝑘𝛼∞
𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑡 − 𝑡0)
𝑘𝛼 .                                              (6) 

In other words, 

                                                       𝑓𝛼(𝑡𝛼) ⊗ 𝑔𝛼(𝑡𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)

𝛼)
⨂𝑘

∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑡 − 𝑡0)

𝛼)
⨂𝑘

∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑡 − 𝑡0)

𝛼)
⨂𝑘

 .                                                 (7) 

Definition 2.5 ([17]): If 0 < α ≤ 1, and 𝑡 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑡𝛼) = ∑
𝑡𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                             (8) 

In addition, the 𝛼-fractional cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑡𝛼) = ∑
(−1)𝑘𝑡2𝑘𝛼

Γ(2𝑘𝛼+1)
= ∑

(−1)𝑘

(2𝑘)!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂2𝑘
∞
𝑘=0

∞
𝑘=0 ,                                      (9) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑡𝛼) = ∑
(−1)𝑘𝑡(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
= ∑

(−1)𝑘

(2𝑘+1)!
(

1

Γ(𝛼+1)
𝑡𝛼)

⨂(2𝑘+1)
∞
𝑘=0

∞
𝑘=0  .                             (10) 

Theorem 2.6 ([17]): If  0 < 𝛼 ≤ 1 and 𝑝, 𝑞 are two real numbers. Then 

                                                       𝐸𝛼((𝑝 + 𝑖𝑞)𝑡𝛼) = 𝐸𝛼(𝑝𝑡𝛼) ⊗ (𝑐𝑜𝑠𝛼(𝑞𝑡𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑞𝑡𝛼)).                                   (11) 

III.    RESULTS AND EXAMPLES 

In this section, the main results including the exact solution of linear system of fractional differential equations with constant 

coefficients are obtained. On the other hand, two examples are provided to illustrate the application of our results. 

Definition 3.1: Let 0 < 𝛼 ≤ 1, 𝑛 be a positive integer. The matrix form of linear system of fractional differential equations 

with constant coefficients is 

                                                                                 ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼),                                                             (12) 
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where 𝑥𝛼(𝑡𝛼) =

[
 
 
 
𝑥𝛼

1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)
⋮

𝑥𝛼
𝑛(𝑡𝛼)]

 
 
 
 and 𝐴 is an 𝑛 × 𝑛 constant matrix. 

 

Definition 3.2: If 0 < 𝛼 ≤ 1, and 𝐴 is an 𝑛 × 𝑛 constant matrix. Then we define 

                                                                𝐸𝛼(𝐴𝑡𝛼) = ∑
1

Γ(𝑘𝛼+1)
𝐴𝑘𝑡𝑘𝛼∞

𝑘=0 = ∑
1

𝑘!
𝐴𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0 .                          (13) 

Theorem 3.3: If  0 < 𝛼 ≤ 1, and 𝐴 is a 𝑛 × 𝑛 matrix. Then the linear system of 𝛼-fractional differential equations with 

constant coefficients 

                                                                                      ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼)                                                         (14) 

has the solution 

                                                                                         𝑥𝛼(𝑡𝛼) = 𝐸𝛼(𝐴𝑡𝛼) 𝑥𝛼(0).                                                         (15) 

Proof   If 𝑥𝛼(𝑡𝛼) = 𝐸𝛼(𝐴𝑡𝛼) 𝑥𝛼(0), then 

                                                                                  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] 

                                                                             = ( 𝐷0 𝑡
𝛼)[𝐸𝛼(𝐴𝑡𝛼) 𝑥𝛼(0)] 

                                                                             = ( 𝐷0 𝑡
𝛼) [∑

1

Γ(𝑘𝛼+1)
𝐴𝑘𝑡𝑘𝛼∞

𝑘=0  𝑥𝛼(0)]  

                                                                             = ∑ ( 𝐷0 𝑡
𝛼) [

1

Γ(𝑘𝛼+1)
𝐴𝑘𝑡𝑘𝛼]  𝑥𝛼(0)∞

𝑘=0   

                                                                             = 𝐴 [∑
1

Γ(𝑘𝛼+1)
𝐴𝑘𝑡𝑘𝛼∞

𝑘=0 ]  𝑥𝛼(0)  

                                                                             = 𝐴𝐸𝛼(𝐴𝑡𝛼) 𝑥𝛼(0)  

                                                                             = 𝐴 𝑥𝛼(𝑡𝛼). 

Therefore, the desired result holds.                                                                                           Q.e.d. 

Definition 3.4: Suppose that 0 < 𝛼 ≤ 1, and 𝑛 is a positive integer. If 𝜑𝛼
1(𝑡𝛼), 𝜑𝛼

2(𝑡𝛼),⋯, 𝜑𝛼
𝑛(𝑡𝛼) are linearly independent 

solutions of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼), then the matrix 

                                                                                 Φ𝛼(𝑡𝛼) = [𝜑𝛼
1(𝑡𝛼), 𝜑𝛼

2(𝑡𝛼),⋯ , 𝜑𝛼
𝑛(𝑡𝛼)]                                           (16) 

is called a fundamental matrix solution of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼). 

Theorem 3.5: Let  0 < 𝛼 ≤ 1. Then Φ𝛼(𝑡𝛼) is a fundamental matrix solution of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼) if and only 

if  det Φ𝛼(𝑡𝛼) ≠ 0. Moreover, if det Φ𝛼(𝑡0
𝛼) ≠ 0 for some real number 𝑡0, then det Φ𝛼(𝑡𝛼) ≠ 0 for all 𝑡. 

Theorem 3.6: Let  0 < 𝛼 ≤ 1 . If the matrix 𝐴  has eigenvalues 𝜆1 ,  𝜆2 ,⋯ ,𝜆𝑛  with linearly independent eigenvectors 

𝑣1,𝑣2,⋯,𝑣𝑛 respectively. Then  

                                                                     Φ𝛼(𝑡𝛼) = [𝐸𝛼(𝜆1𝑡
𝛼)𝑣1, 𝐸𝛼(𝜆2𝑡

𝛼)𝑣2, ⋯ , 𝐸𝛼(𝜆𝑛𝑡𝛼)𝑣𝑛]                                (17) 

is a fundamental matrix solution of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼). 

Proof  Since for all 𝑖 = 1,2,⋯ , 𝑛, 

                                                                                       ( 𝐷0 𝑡
𝛼)[𝐸𝛼(𝜆𝑖𝑡

𝛼)𝑣𝑖] 

                                                                                    = 𝜆𝑖𝐸𝛼(𝜆𝑖𝑡
𝛼)𝑣𝑖  

                                                                                    = 𝐴 𝐸𝛼(𝜆𝑖𝑡
𝛼)𝑣𝑖  ,                                                                              (18) 

and det Φ𝛼(0) = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛] ≠ 0, it follows from Theorem 3.5 that the desired result holds.               Q.e.d. 
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Theorem 3.7: If  0 < 𝛼 ≤ 1. Then  Φ𝛼(𝑡𝛼) = 𝐸𝛼(𝐴𝑡𝛼) is a fundamental matrix solution of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼). 

Proof  Since  

                                                                                ( 𝐷0 𝑡
𝛼)[ Φ𝛼(𝑡𝛼)] 

                                                                           = ( 𝐷0 𝑡
𝛼)[𝐸𝛼(𝐴𝑡𝛼)] 

                                                                           = 𝐴𝐸𝛼(𝐴𝑡𝛼) 

                                                                           = 𝐴 Φ𝛼(𝑡𝛼).                                                                                            (19) 

It follows that the desired result holds.                                                                                                    Q.e.d. 

Theorem 3.8: Let  0 < 𝛼 ≤ 1. If  Φ𝛼(𝑡𝛼) is a fundamental matrix solution of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼), then 

                                                                                𝐸𝛼(𝐴𝑡𝛼) =  Φ𝛼(𝑡𝛼)Φ𝛼
−1(0).                                                              (20) 

Proof  Since 𝐸𝛼(𝐴𝑡𝛼) and  Φ𝛼(𝑡𝛼) are fundamental matrix solutions of  ( 𝐷0 𝑡
𝛼)[𝑥𝛼(𝑡𝛼)] = 𝐴 𝑥𝛼(𝑡𝛼), it follows that 

                                                                                      𝐸𝛼(𝐴𝑡𝛼) =  Φ𝛼(𝑡𝛼)𝐶,                                                                   (21) 

where 𝐶 is a nonsingular constant matrix. If 𝑡 = 0, then 𝐼 =  Φ𝛼(0)𝐶. Thus, 𝐶 = Φ𝛼
−1(0). Hence, the desired result holds.            

                                                                                                                                                                       Q.e.d. 

Theorem 3.9: If  0 < 𝛼 ≤ 1, 𝐴, 𝐵, 𝑃 are 𝑛 × 𝑛 matrices, and 𝑃 is a nonsingular matrix. Then 

                                                           𝐸𝛼((𝐴 + 𝐵)𝑡𝛼) = 𝐸𝛼(𝐴𝑡𝛼)⨂𝐸𝛼(𝐵𝑡𝛼), if 𝐴𝐵 = 𝐵𝐴.                                           (22) 

                                                                               [𝐸𝛼(𝐴𝑡𝛼)]⨂ −1 = 𝐸𝛼(−𝐴𝑡𝛼),                                                              (23) 

                                                                              𝐸𝛼(𝑃−1𝐴𝑃𝑡𝛼) = 𝑃−1𝐸𝛼(𝐴𝑡𝛼)𝑃.                                                          (24) 

Proof    Since 𝐴𝐵 = 𝐵𝐴, it follows that 

                        𝐸𝛼(𝐴𝑡𝛼)⨂𝐸𝛼(𝐵𝑡𝛼) 

                    = ∑
1

𝑘!
𝐴𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0 ⨂ ∑

1

𝑘!
𝐵𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0   

                    = (𝐼 + 𝐴
1

Γ(𝛼+1)
𝑡𝛼 +

1

2!
𝐴2 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂2

+ ⋯ )⨂(𝐼 + 𝐵
1

Γ(𝛼+1)
𝑡𝛼 +

1

2!
𝐵2 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂2

+ ⋯ )  

                    = 𝐼 + (𝐴 + 𝐵)
1

Γ(𝛼+1)
𝑡𝛼 +

1

2!
(𝐴2 + 2𝐴𝐵 + 𝐵2) (

1

Γ(𝛼+1)
𝑡𝛼)

⨂2

+ ⋯                        

                    = 𝐼 + (𝐴 + 𝐵)
1

Γ(𝛼+1)
𝑡𝛼 +

1

2!
(𝐴 + 𝐵)2 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂2

+ ⋯  

                    = ∑
1

𝑘!
(𝐴 + 𝐵)𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0   

                    = 𝐸𝛼((𝐴 + 𝐵)𝑡𝛼).                                                                                                                                 (25) 

On the other hand, since 𝐴 and –𝐴 are commutative,  

                                                                     𝐸𝛼(𝐴𝑡𝛼)⨂𝐸𝛼(−𝐴𝑡𝛼) = 𝐸𝛼((𝐴 − 𝐴)𝑡𝛼) = 𝐼.                                           (26) 

Thus, 

                                                                         𝐸𝛼(−𝐴𝑡𝛼) = [𝐸𝛼(𝐴𝑡𝛼)]⨂−1. 

Finally, 

                                                                             𝐸𝛼(𝑃−1𝐴𝑃𝑡𝛼) 

                                                                        = ∑
1

𝑘!
(𝑃−1𝐴𝑃)𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0   
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                                                                        = ∑
1

𝑘!
𝑃−1𝐴𝑘𝑃 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0   

                                                                        = 𝑃−1 (∑
1

𝑘!
𝐴𝑘 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑘
∞
𝑘=0 ) 𝑃  

                                                                        = 𝑃−1𝐸𝛼(𝐴𝑡𝛼)𝑃 .                                                                                   (27) 

Example 3.10: Let 0 < 𝛼 ≤ 1.Find the solution of the initial-value problem of linear system of 𝛼-fractional differential 

equations with constant coefficients 

                                                       ( 𝐷0 𝑡
𝛼) [

𝑥𝛼
1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] = [
2 1
0 2

] [
𝑥𝛼

1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] ,    [
𝑥𝛼

1(0)

𝑥𝛼
2(0)

] = [
2

−1
]                                    (28) 

Solution  Since 𝐴 = [
2 1
0 2

] = [
2 0
0 2

] + [
0 1
0 0

] , and [
2 0
0 2

], [
0 1
0 0

] are commutative, it follows from Theorem 3.9 that 

                                                𝐸𝛼(𝐴𝑡𝛼) 

                                           = 𝐸𝛼 ([
2 1
0 2

] 𝑡𝛼)   

                                           = 𝐸𝛼 ([
2 0
0 2

] 𝑡𝛼)⨂𝐸𝛼 ([
0 1
0 0

] 𝑡𝛼)                                                                                                     

                                           = [
𝐸𝛼(2𝑡𝛼) 0

0 𝐸𝛼(2𝑡𝛼)
] ⨂(𝐼 + [

0 1
0 0

]
1

Γ(𝛼+1)
𝑡𝛼 +

1

2!
[
0 1
0 0

]
2

(
1

Γ(𝛼+1)
𝑡𝛼)

⨂2

+ ⋯)  

                                           = [
𝐸𝛼(2𝑡𝛼) 0

0 𝐸𝛼(2𝑡𝛼)
] ⨂ [

1
1

Γ(𝛼+1)
𝑡𝛼

0 1
]  

                                           = [
𝐸𝛼(2𝑡𝛼)

1

Γ(𝛼+1)
𝑡𝛼⨂𝐸𝛼(2𝑡𝛼)

0 𝐸𝛼(2𝑡𝛼)
].                                                                        (29) 

And hence, by Theorem 3.3, the solution is 

                                                      [
𝑥𝛼

1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] 

                                                 = [
𝐸𝛼(2𝑡𝛼)

1

Γ(𝛼+1)
𝑡𝛼⨂𝐸𝛼(2𝑡𝛼)

0 𝐸𝛼(2𝑡𝛼)
] [

2
−1

]  

                                                 = [
𝐸𝛼(2𝑡𝛼)⨂ (2 −

1

Γ(𝛼+1)
𝑡𝛼)

−𝐸𝛼(2𝑡𝛼)
] .                                                                 (30) 

That is, 

                                                              𝑥𝛼
1(𝑡𝛼) = 𝐸𝛼(2𝑡𝛼)⨂ (2 −

1

Γ(𝛼+1)
𝑡𝛼),                                                         (31) 

                                                              𝑥𝛼
2(𝑡𝛼) = −𝐸𝛼(2𝑡𝛼).                                                                                   (32) 

Example 3.11: If 0 < 𝛼 ≤ 1.Find the solution of the initial-value problem of linear system of 𝛼-fractional differential 

equations with constant coefficients 

                                                       ( 𝐷0 𝑡
𝛼) [

𝑥𝛼
1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] = [
3 5

−5 3
] [

𝑥𝛼
1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] ,    [
𝑥𝛼

1(0)

𝑥𝛼
2(0)

] = [
−1
3

].                            (33) 

Solution Let 𝐴 = [
3 5

−5 3
], then det(𝜆𝐼 − 𝐴) = 0 implies that the eigenvalues of 𝐴 are 𝜆1 = 3 + 5𝑖, 𝜆2 = 3 − 5𝑖. We can 

easily obtain the eigenvector of 𝜆1 is 𝑣1 = [
1
𝑖
], and the eigenvector of 𝜆2 is 𝑣2 = [

𝑖
1
]. Therefore, by Theorem 3.6 we obtain 

a fundamental matrix solution of this linear system of 𝛼-fractional differential equations, 

https://www.researchpublish.com/
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                                                               Φ𝛼(𝑡𝛼) = [
𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝑖𝐸𝛼((3 − 5𝑖)𝑡𝛼)

𝑖𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝐸𝛼((3 − 5𝑖)𝑡𝛼)
].                                     (34) 

Using Theorem 2.6 and Theorem 3.8 yields 

                                         𝐸𝛼(𝐴𝑡𝛼) 

                                   =  Φ𝛼(𝑡𝛼)Φ𝛼
−1(0) 

                                   = [
𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝑖𝐸𝛼((3 − 5𝑖)𝑡𝛼)

𝑖𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝐸𝛼((3 − 5𝑖)𝑡𝛼)
] [

1 𝑖
𝑖 1

]
−1

 

                                   = [
𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝑖𝐸𝛼((3 − 5𝑖)𝑡𝛼)

𝑖𝐸𝛼((3 + 5𝑖)𝑡𝛼) 𝐸𝛼((3 − 5𝑖)𝑡𝛼)
]
1

2
[
1 −𝑖
−𝑖 1

] 

                                   =
1

2
[

𝐸𝛼((3 + 5𝑖)𝑡𝛼) + 𝐸𝛼((3 − 5𝑖)𝑡𝛼) −𝑖𝐸𝛼((3 + 5𝑖)𝑡𝛼) + 𝑖𝐸𝛼((3 − 5𝑖)𝑡𝛼)

𝑖𝐸𝛼((3 + 5𝑖)𝑡𝛼) − 𝑖𝐸𝛼((3 − 5𝑖)𝑡𝛼) 𝐸𝛼((3 + 5𝑖)𝑡𝛼) + 𝐸𝛼((3 − 5𝑖)𝑡𝛼)
] 

                                   = [
𝐸𝛼(3𝑡𝛼)⨂𝑐𝑜𝑠𝛼(5𝑡𝛼) 𝐸𝛼(3𝑡𝛼)⨂𝑠𝑖𝑛𝛼(5𝑡𝛼)

−𝐸𝛼(3𝑡𝛼)⨂𝑠𝑖𝑛𝛼(5𝑡𝛼) 𝐸𝛼(3𝑡𝛼)⨂𝑐𝑜𝑠𝛼(5𝑡𝛼)
].                                                         (35) 

Thus, by Theorem 3.3, the solution is 

                                            [
𝑥𝛼

1(𝑡𝛼)

𝑥𝛼
2(𝑡𝛼)

] 

                                            = 𝐸𝛼(𝐴𝑡𝛼) 𝑥𝛼(0) 

                                            = [
𝐸𝛼(3𝑡𝛼)⨂𝑐𝑜𝑠𝛼(5𝑡𝛼) 𝐸𝛼(3𝑡𝛼)⨂𝑠𝑖𝑛𝛼(5𝑡𝛼)

−𝐸𝛼(3𝑡𝛼)⨂𝑠𝑖𝑛𝛼(5𝑡𝛼) 𝐸𝛼(3𝑡𝛼)⨂𝑐𝑜𝑠𝛼(5𝑡𝛼)
] [

−1
3

] 

                                       = [
𝐸𝛼(3𝑡𝛼)⨂(−𝑐𝑜𝑠𝛼(5𝑡𝛼) + 3𝑠𝑖𝑛𝛼(5𝑡𝛼))

𝐸𝛼(3𝑡𝛼)⨂(3𝑐𝑜𝑠𝛼(5𝑡𝛼) + 𝑠𝑖𝑛𝛼(5𝑡𝛼))
] .                                                     (36) 

That is, 

                                                                  𝑥𝛼
1(𝑡𝛼) = 𝐸𝛼(3𝑡𝛼)⨂(−𝑐𝑜𝑠𝛼(5𝑡𝛼) + 3𝑠𝑖𝑛𝛼(5𝑡𝛼)),                              (37) 

                                                                  𝑥𝛼
2(𝑡𝛼) = 𝐸𝛼(3𝑡𝛼)⨂(3𝑐𝑜𝑠𝛼(5𝑡𝛼) + 𝑠𝑖𝑛𝛼(5𝑡𝛼)).                                 (38) 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional derivative, we obtain the exact solution of linear system of 

fractional differential equations with constant coefficients. A new multiplication of fractional analytic functions plays an 

important role in this article. On the other hand, we give some examples to illustrate the application of our results. In fact, 

the results we obtained are generalizations of these results in ordinary differential equations. In the future, we will continue 

to study the problems in fractional differential equations and applied mathematics. 
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